Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network
نویسندگان
چکیده
منابع مشابه
Dose Reduction Methods in Chest Computed Tomography
Introduction: Computed tomography is one of the most powerful tools for investigating thorax disease, because it shows progression of lung disease much clearer than chest radiography. Technical advances in CT scanners have led to some abilities for CT scanners such as coverage of larger volume, lower noise and ability for acquiring image in one respiratory phase. However, this will be accompani...
متن کاملImage De-raining Using a Conditional Generative Adversarial Network
Severe weather conditions such as rain and snow adversely affect the visual quality of images captured under such conditions thus rendering them useless for further usage and sharing. In addition, such degraded images drastically affect performance of vision systems. Hence, it is important to solve the problem of single image de-raining/de-snowing. However, this is a difficult problem to solve ...
متن کاملConditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...
متن کاملSimultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network
Recently, Generative Adversarial Network (GAN) has been found wide applications in style transfer, image-to-image translation and image super-resolution. In this paper, a colordepth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution in 3D videos. Firstly, given the low-resolution depth image and low-resolution color image, a gen...
متن کاملSemi-Supervised Learning with Context-Conditional Generative Adversarial Networks
We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Radiology
سال: 2021
ISSN: 0938-7994,1432-1084
DOI: 10.1007/s00330-021-07714-2